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Large-scale features of rotating forced turbulence
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Large-scale features of a randomly isotropically forced incompressible and unbounded rotating fluid are
examined in perturbation theory. At first order in both the random force amplitude and the angular velocity, we
find two types of modifications to the fluid equation of motion. The first correction transforms the molecular
shear viscosity into @rotation independepeffective viscosity. The second perturbative correction leads to a
new large scale nondissipative force proportional to the fluid angular velocity in the slow rotation regime. This
effective force does no net work and alters the dispersion relation of inertial waves propagating in the fluid.
Both dynamically generated corrections can be identified with certain components of the most general axisym-
metric “viscosity tensor” for a Newtonian fluid.
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[. INTRODUCTION ticular, those that arise at first order in perturbation theory.
The part of this “viscosity tensor” that is pair antisymmetric
The special features of turbulence in the presence of roin the indices plays a significant role; however, it does not
tation have attracted the interest of many auttitrs4]. Re-  lead to dissipation, and therefore, is not truly viscous.
lying on some experiments, the methods of study used have As in homogeneous and isotropic turbulence, we assume
ranged from analytic approaches to numerical simulationghat the physical region of study is sufficiently far from the
[2,5-7. The central theme in rotating fluids is the effect of surfaces, where the boundary conditions are imposed, for
the Coriolis force, which induces anisotroftfiere is a pre-  them not to have anglirect effect, except the presence of the
ferred direction, that of the rotation axisThis anisotropy is  scaleL. In contrast to ordinary turbulence, this condition
extreme in the limit of qut rota_ltion, which actually forces the only implies that we can have homogeneous turbulence but,
flow to become two-dimensionalProudman-Taylor theo- e o rotation, it cannot be isotropic. It is pertinent to men-

rem) [1]. In this work we apply perturbation theory to the {jon here that the possibility of anisotropic forced turbulence,
randomly forced Navier-Stokes equation with Coriolis forceand precisely with axial symmetry, has already been consid-

as ? rgogel fotr Lhe t;,lrt'guleng'reglme oga rlotaftlng gul'\? Theered[ll]. In this reference, however, the authors assume that
perturbative study ot the ordinary randomly Torced Waviery,o reardown of isotropy occurs through a random force

Stokes equa_tlon, in_combination W'th the renormallzatlonwhose two-point correlation function depends on the anisot-
group(as an improvement of perturbation thepryas a long

tradition [8—10]. ropy vectom. They derive a rerlormalized force proportional
The addition of the Coriolis force, induced by the rotationto second and fourth powers af In our case, we will see
of the fluid, introduces one additional parameter, the angulathat the first perturbative correction is linear @, like the
velocity Q) or, in dimensionless form, either the Rossby or Coriolis force itself.
Ekman numbergin addition to the Reynolds numbelrl]. This paper is organized as follows. In Sec. Il we introduce
Let us focus on the Ekman numb&k=v/(Q1L?), that de-  the randomly forced hydrodynamical equations with rotation.
pends on the viscosity and a scald., roughly associated We assume that the fluid is incompressible and show how to
with the size of the fluid system. The Ekman number givedormulate them as a problem of homogeneous but aniso-
the relative importance of the viscosity and Coriolis forces.tropic incompressible turbulence. Fourier analysis of the tur-
We will assumehenceforth that for small) (<v/L?) the bulent velocity field is used to organize the perturbation ex-
turbulence is isotropic and the only relevant parameter is theansion 10] in Sec. Il B. We introduce in Sec. Il C the linear
viscosity. In this limit, the results of the study of the ordinary response function. Unlike the isotropic case, the Coriolis
randomly forced Navier-Stokes equation hdttle random term leads to anonsymmetridinear response function ma-
force is always assumed isotropic trix. In Sec. Il D we define the nonlinear response function
For largerQ) we will encounter new features. In fact, the and present its perturbative expansi@how rotation. We
only restriction on perturbative correction terms is that theyalso compute the first order perturbative correction to the
respect the basisymmetryof the equations, in our case, the response function, which allows the identification of the
axial symmetry about the rotation axis. We will see that pertation independenteffective shear viscosityproportional to
turbation theory generates new terms fulfilling these symmethe cube of the Reynolds numbeand a new anisotropic
try constraints. Therefore, one must find the complete set diorce. In Sec. lll we write down the most general axially
allowed terms that can arise in perturbation theory. We willsymmetric “viscosity tensor,” as the existence of a preferred
determine all the terms that can be represented by the congirection, singled out by the fluid rotation, requires the intro-
ponents of an axisymmetric “viscosity tensor” and, in par- duction and use of axisymmetric tensors. This rank four
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“viscosity tensor” expresses the proportionality between thespectrum and statistics, we take a Gaussian random force that
fluid stress tensor and the rate of strain tensor. In isotropi¢s white in time, for simplicity, but we allow foftranslation

and homogeneous incompressible turbulence, the viscosifpvariany spatial correlations. So we can write

tensor depends only on one parameter, the fluid shear viscos- _ . . o

ity. In the case of rotating turbulence, and for slow rotation, (fi(x,t))=0 and (f;(x,t)f;(x",t"))=D;;(x—x")8(t—t"),

we find that the axisymmetric “viscosity tensor” depends on 2

two parameters: the molecular shear viscogityming from
the isotropic terms of the “viscosity tensorand a new one, where the angular brackets denote an average oyer the ran-
that arises from the anisotropic terms in the “viscosity ten-dom force realizations. The spectral function Ey(x) will

sor.” We also show that this new parameter can be identified€ specified below.

as the coefficient of the anisotropic force calculated pertur- We assume that the fluid is incompressible so that the
batively (in the previous Sec. Il D Having thus established density field is constantp(x,t)=pg] and V-u=0. Under

the equivalence between the perturbatively corrected rarthis condition we need only consider the equation for the
domly forced Navier-Stokes equation with Coriolis force onconservation of momenturfib) and write

the one hand, and @\ewtonian rotating incompressible

fluid with an effective axisymmetric “viscosity tensor” on ﬂ+(u-€)u:— iﬁ
the other, we proceed, in Sec. IV, to discuss some physical at Po
consequences of the new terms in the perturbed fluid equa-
tions. In Sec. IV A we consider the quasilocal force induced
by the anlsqtroplc components of the “viscosity tensor andNotice that the force per unit massvill be taken solenoidal
show that it is proportional to the cube of the Reynolds num- - . . }
ber, and that it does not lead to dissipation. In Sec. IV B we?S Well, that isV-f=0, in order to avoid having a random
study the dynamical effects of this force on the propagatiorfomponent in the pressure. _ _

of inertial waves. We end by discussing our results and pro- " the absence of random stirring particular solutions of
posing further work on the problem of rotating turbulence. InEd- (3) are well known(for an incompressible flud it ad-
Appendix A we introduce the diagrammatic representation ofMitS plane wave solutions, callédertial waves[1,12,13.

the exact Navier-Stokes equation and the diagram encodinEhese are exact solutions of the nonlinear equations, but su-
the first order correction to the response function and in ApPerposition does not hold. They may have a role in the tran-
pendix B we present the technical details needed to carry otion to turbulencg4]. In Sec. IV B we will study how the

the perturbative calculation in the slow rotation limit. perturbative corrections modify the propagation of inertial
waves.

We now proceed to eliminate the gradient term of ).
by making use of the incompressibility conditi¢h0]. We
A. Equations of motion with random force define the generalized pressure ps=p— (po/2) (2 X x)2.
in a rotating frame By taking the divergence of the previous equation we can
solve forp* to obtain

_Po 2
p— 2 (0xX)

+vV2u—2Q X u+f. ®)

II. BASIC EQUATIONS AND PERTURBATION THEORY

We start from the hydrodynamical equations for a fluid
with density field p(x,t), velocity field u(x,t), pressure 1
p(x,t), and molecular shedtangential and bulk kinematic p* = —Po—z[ﬁi(ujﬁjui)+2€iijjf9iUk], (4
viscositiesy and «, respectively. We assume that the fluid is \Y
rotating with constant angular veloci® along thez axis

" -
and that it is subject to an isotropic random forcipgy unit S0 that the pressure® can be eliminated from Eq3) by

massf. The mass and momentum conservation equations ayé/mmg
P ¢ G =T (U ¥)u+ 20 5
—£ Y (pu)=0, (1a oo PV [(u-V)u u]. (5
Ju 1 d—2 We can write the Navier-Stokes equation as follows:
E+(u-V)u=—;Vp+vV2u+ K+ v ”V(Vu) ”
— +AP[(u-V)u]=vV2u—P(2QXxu)+f, (6)
—20XU— QX (QXX)+, (1b) at

whered is the number of space dimensions. The dimensioﬁ(\’here’ follgwing standard practi.ce, we have introduce(_j the
of spaced will be kept as a free variable, although when we constant\ In fron_t of the advective term_ for book-keeping
consider rotation-dependent expressions, these must tgéjr_pose%] (}‘.W'" he u_seful when carrying out the pertur-
evaluated fod=3. The momentum equatidib) is supple- at!on Expansion and IS to be set to one afterwartige
mented with a random stirring force that leads to a statisticaProjection operatof” is given by

distribution for the velocity field and can be used to model 1

turbulent flows just as is done for isotropic randomly stirred P=1-V—V, 7
(nonrotating turbulence[8,10]. Regarding the random force V2
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and ensures that the nonlinear and Coriolis terms are sole- (—iw+vk2)u-(|2 )+ Py (k) (2Qx ),
noidal. In Eq.(6), if u is solenoidal so i§ and vice versa. e . J

Unlike Egs.(1b) or (3), Eq. (6) is translation invariant. i ddf,
That is, the centrifugal term ifiLb) clearly distinguishes the =— ER[Pik(k)kﬁpij(k)kk]f g
origin (x=0) as a special point; but as we have seen in Eq. p<A (2)
(5) we can include this term into the generalized pressure and > do’ . . R _
eliminatep* from the equation. This yields E¢6) in which X f ﬁuj(k_ p,o— o )u(p,o)+fi(kw).

a preferreddirection (but no preferred pointis singled out

by the angular velocity. This latter equation is invariant un- (12)
der translations, hence, we can make use of the Fourier trans-
form. Since in Fourier space This equation, but without the Coriolis term, is a familiar

expression in turbulence reseaf@-10. Equation(11) can
k. be iterated to any desired order inand will serve as the
Pi-(k)=5i-——1, (8) starting point for constructing the perturbation expansion,
J J 2 LS . . . .
k which is considered in the following Section.

Eqg. (6) only contains vectors orthogonal toand we may
refer to this equation as thteansverseNavier-Stokes equa-
tion. If we “shutoff” the nonlinear termgproportional to\) in

We choose the random force spectr(@h as follows: Eq. (11) we can identify the(inverse linear response func-
tion, which will be used in carrying out the perturbative cal-
culation. Thus, settingg =0 in Eq.(11) we have

C. The linear response function

(fi(k,w))=0

(—iw+ k)UK, w)+P; (k) (2QX u@); = fi(k, o),
and (12)

<fi(|z,w)fj(|2’ ') whereu© is the linear velocity field. The preceding equation
can be written as
=(2D)kY(2m) 1P (k) S0+ w') 84 (k+K'), A i i
©) [Go(k, )] 'uO(k,w)=f(k,w), (13

which defines the lineafinversg response function matrix,
and allows one to solve for the linear velocity field

u©(k, ). In the following section we calculate the pertur-
tions produce an eneray spectrum resembling the Kolmo bative corrections to the linear inverse response function due
P gy sp g Y% the existence of nonlinearities and random forcing, and

orov: spectrum. The raljdom f_orce agsstropically on the etstablish their effect on the physical paramefterg., viscos-
fluid, thus, whatever anisotropies emerge at large scale mus

be due to the Coriolis force. In the following sections we' y) describing the transverse Navier-Stokes equation.
analyze the nature of the anisotropies by solving @®g.in

wherek=|k|, D>0 is a measure of the amplitude of the
random force and the real expongnt —2 characterizes the
random force spectruf®]. Wheny=d the velocity correla-

perturbation theory. D. The nonlinear response function and its first order
perturbative expansion
B. The Fourier transformed equation In this section we proceed to expand Et) by iteration,

in powers of the nonlinear couplingee the diagrammatic
representation, Appendix $A1). In this way one can calcu-
late the perturbative corrections to the response function to

In what follows we use the Fourier transformed equation
of motion (6). Our convention for the Fourier transform is

given by any desired order in. We do not present all the details of
A% = do o such expansion as these can be found in review arfitiés
U (X,1) = j ——ui(K,w)ekx=e) (10 and textbooks{l_O]. _
) k<A (27)9 ) -2 J The calculation of the nonlinear response funct[@i

requires the correction matrpM] which is defined by a re-
We have introduced a wave-number cutaff so that the cursion formula

integral overk is restricted to the valug&|<A. The inverse G1=[G 1+ G ITMITGTI=[GAl+[GITMITG
of this cutoff, 1A, can be associated with the dissipation [GI=1Gol*+ [GolMILGI=[Gol +[Goll MIL Gol
(Kolmogoroy scale, and we assume thannkL [9]. +[GolIM][Go][M][Go]+-- -, (14)

In order to write the Navier-Stokes E@6) in wave-
number representation we transform théeld according to  which implies
Eq. (10), apply convolution to the nonlinear term, and invert
the Fourier transform to obtain [G] =[Gyl t—[M]. (15)
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In Appendix A we present the diagrammatic representationwvave-number cutoffsh =1, ande;j the Levi-Civita tensor

of the exact transverse Navier-Stokes equation, as well as tffer d=3. In arriving at this final form we have assumed slow
first order correction to the response function. The diagramotation, that is, we have kept the rotation dependent terms
of Eq. (14) with the correctiof M ], calculated to first order up toO(Q) in the calculation. This is explained in Appendix
of perturbation theory in the random force amplitude, is preB and we will come back to this point in Sec. V. We can
sented in diagrantA2). When written in components, the compare the linear inverse response functidh) to its first

correction matri{M] is given by

2
X AX K, Prni(K)

an(lz,w)=

+Ki Prnr(K) 1l jn (K, ), (16)

where the factor 4 is combinatorigdee diagraniA2)], and
the functionl j, (K, w) is defined by

Lrin(K, —f d'p
rin(Ki@)= m<lpl<A (2m)94) -

n = Pn) Pis(k—p)]
X(2D)|p| Y[Go(P,®")]raPan(P)
X[Go(—p,— ") 5 d Go(k—p,0—w)]j,

(17)

(whereT means the transposed majrifhe integral ovep
would be divergent a;ﬁ:ﬁ, so it is cutoff at the low wave-

—[(k Ps)Pin(k—p)

+(k

number given by the inverse of the system size scale, 1/
The evaluation of Eq(17) also involves an integration over

the frequencyw’, which has been carried out fefow rota-
tion (see Appendix B

As we are interested in the late time and large scale limits

we have computed/lmn(k w) only for w=0 and up to sec-
ond order ink [8]. The integration over wave- numbarcan

be decomposed into an integration over modulus and anglegjls. Given thatAL>1

The integrand must be expanded, up to second order &1s
this is sufficient to obtain the effective viscosifgee Eq.

(B2)]. The calculation of rJ-n(lz,w) is straightforward but

order correctiori\/lij(IZ,O). In order to do so, we sai=0 in
Eq. (B1) to obtain

[GO(EaO)]i_jlzVk25i1+25nmj9mpin(k)u (19

which is split into an isotropic pafproportional tov) and an
anisotropic part(proportional to{)). The first part of[M]
(18a corrects the molecular shear viscosity exactly as in
the absence of rotatiof8]. The nonlinear inverse response
function must take the same form EGO(IZ,O)]El, with »
replaced byy’, the effective viscosity8]. The value ofy’
can be obtained by making use of E¢E5) and(18a), so that

(2D)Sy A4 A—(2)dy4
(2m)4(2v)? (d—y—4)d(d+2)
X (d2—y—4)k?P; (k).

v'k28; = vk?5; +

(20

If we multiply Eq. (20) by P,i(k) and make use of the fact
that P is idempotent, we obtain

D A9V A—(1L)9 V4 (d?—y—4)Sy

"= —— ’
PN d—y—4 d(d+2)(2m)¢
(21

which shows that the isotropic term [d¥1 ], Eq. (183, renor-
Tnalizes the molecular shear viscosity

We must distinguish three cases, namghkzd—4, y=d
—4, andy>d—4. If y=d—4, naive perturbation theory
, in the casey<d—4, the term
A97Y~% dominates over (1)%7Y™* so we could take the

limit L—c (the p integral is convergent in the lower limit
In contrast, in the casg>d—4, the term (1)Y= domi-

tedious and its technical details are presented in Appendix Biates and we instead neglect the contribution proportional to

According to Eq.(15), the matrix[M] provides the order
\? correction to the inverse response function. To obft&lh
(for =0 and in the limitk— 0), we carry out the integral of
Eq. (17) and substitute into Eq16):

M (E0) = —y2_(2D)Ss AGTY A (1L)d Ty
ik0= (2m)4(2)2 (d—y—4)d(d+2)
X (d?—y—4)k*P;(k) (18a
,(2D)S4(20 ;) A4V 70— (1)4 Y70
(2m)d2p)® (d—y—6)d(d+2)
X(_d2+d+2)[knkjenmi_kzenijin(k)]y
(18b

whereS; is the surface area of the unit spheredimimen-

A97Y74 In consequence, the actual expansion parameter is
DAY Y418 or DLY"*" 943, according to whethey<d

—4 or y>d—4, respectively. We will taked—4<y<d?

—4. The numbeDLY* #9142 can be identified with the
cube of the Reynolds number, on account of the interpreta-
tion of L as the system size scale, and that the dissipation rate
is proportional to the amplitude of the random foie€9].

In particular, ind=3,

D (L)Yt (y-5S;

V—V——
2v2 Y+l 1527)3

. 1 5-yDLY*!
60m2 Y+l 43

(22

The most interesting caseys=d= 3, which yields the Kol-

sions, A and 1L are, respectively, the upper and lower mogorov energy spectrum.
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The second part of the correctidid8hb) has the same We observe that the number of independent components has
structure as the anisotropic term on the right-hand side of Echeen reduced from 21 to 5 for the pair-symmetric term and
(19), on considering that the first term within the squarefrom 15 to 3 for the pair-antisymmetric part. The symmetry
brackets vanishes when it acts op. However, it does not arguments used in deducing E¢853 and(25b) are analo-
correspond to a renormalization 62, owing to the addi- gous to those used in the theory of elasti¢ity].
tional dependence ok, namely, thek? factor. In fact, this The coefficient functions; (22) and;(?) can be writ-
factor is adequate for a “viscosity term” that depends@n ten as a series 2%

(anisotropy. Therefore, it suggests the introduction of an

anisotropic “viscosity,” which we address in the following +o +oo

section. = ZO an (Q?) Z Bnr(Q?)". (26)
=

. SYMMETRY REQUIREMENTS: THE EFFECTIVE o . . )

“/ISCOSITY TENSOR” In the limit of slow rotation(linear order in(}) these coef-
ficients reduce to their constanfl&0) value and, further-

In the preceding section we have seen that the {@8h) more, the terms proportional t@s,a,,as,3,, and3; van-
induces no corrections t. In this section we give a physi- ish at this order. We can then write for the “viscosity tensor”
cal interpretation of this anisotropic contribution, and show
that it arises from an effective “viscosity tensor” for the s _
rotating fluid with mixed symmetry in its in)c/iices. For a New- Zijmn = @2(mSjn + O Ojm) + @28 6. (279
tonian fluid the linear relation between the rate of strain and A
stress tensors involves a rank four viscosity tensor, so thatwe  7ijmn= B12q(€gimSjn+ €qinSjm ™ €qjmSin T €qjnSim) -
can write[15] (27b

_ The pair-symmetric part is isotropic and we can identify

X +@ = TijmnUmn- (23 pok=ay+2ay/d and pov=a;, wherex and v denote the
molecular bulk and shear kinematic viscosities, respectively;
As bothT;; andup,, are symmetric tensors the only symme- the pair-antisymmetric part, proportional to the coefficient
tries of the “viscosity tensor” are the following;jmn B4, is identified below. Incompressibility means that 0,

= Djimn aNd 7jjmn= Mijnm - From the above symmetries we |eaving only v, in the absence of rotation. This is the mo-
conclude that the *“viscosity tensor” has 36 independentlecular viscosity in the original Navier-Stokes equatiab),
componentgin d=3). We write 7;;,,, as a sum of a pair- which gets renormalized, becoming an effectixatation in-
symmetric(S) and a pair-antisymmetrigd) part as follows  dependent viscosity, as seen in the preceding Sec. Il D.
However, it is to be expected that perturbation theory, at
sufficiently high order, generates a dependenca06n Q,
such that one would be led to consider a rotation dependent
s A viscosity. At the order we are working, the effect of rotation
= Tijmn ™t Mijmn (24 is to generate a rotation dependent anisotropic “viscosity” of
the type(27h), as will be demonstrated below.

The anisotropic “viscosity”(27b) is associated to a stress

tensorTﬁ, which yields the following viscous force

1 Ju, du,
Tijzi ﬂijmn(

1 1
Wijmnzz( NijmnT Wmnij)"_ E(ﬂijmn_ 77mnij)

o) thatr;”mn has the same symmetries ggn, plus 77.Jmn
nﬁmu, and 77umn has the same symmetries agn, plus
Nimn=— Tmnij- There are 21 pair-symmetric and 15 pair-
antlsymmetrlc independent components. The presence of

axial symmetry(induced by the Coriolis terinreduces the
number of independent components of b@ﬁpnn and ﬂf}mn . . . )
The most general axisymmetric tengor d=3) can be con- In wave-number representation this can be written as
structed fromQ);, &;;, ande;; as follows

Fi =7, TA d; (77|]mnumn) (28)

1
Nimn= @1(Q?)(8imSjn+ 8in Sjm) + a2( Q) 8ij S+ a3(Q?) Fi=— (E) Kj 7jmn(KnOma* KinGng) Ug =~ KjKm7{jqmUq
(0 8t Qi) + aa(Q2) (2 Qi 29

+QQ 060+ Q0 0jmt+ Q0 6im) where we have made use of the symmetry within pairs of
) indices of the tensow”. In order to be consistent with the

+as(09)Q1QQn 5, (258 transverse Navier-Stokes equation, we must project( 3.

by means ofP(k)

ﬂﬁng Bl(Qz)Qq(Eqim5jn+ eqin5jm+ quméin+ ean5im)

+ﬁ2(92)9q(6qimﬂj9n+eqianQm+ eqijiQn Pip(k)FP:_kamPip(k) nﬁiquQ' (30)

0. 2 0. — .
T €qin{illm) + B5(09) (i Q;omn~= Qml2n i) We now substitute Eq27b) into the previous expression to
(25b) obtain
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Pip(K)Fp=—B1Pip(K)kjknQy, The physical character of the forég can be revealed by
writing the effectiveequation of motion in coordinate space.
X (€pgndjm T €pmndjq T €jqnpmT €jmnJpg) Ug We have
= _ﬁlﬂn[qumfimn+szmqnpim(k)]uq au R 5
— +AP(u-Vu)=»'Vu—P(2Q X u)
= _BlanZqunPim(k)UQI (31) ot
where we have taken into account the antisymmetric proper- — B1P(2QX V2u) +f, (39

ties of the Levi-Civita tensor and the fact th@;(k)k; . L . . L
=P, (K)k;=0. We now compare this equation with the first wherey’ is the rotation independent effective kinematic vis-
LR R =V

order perturbative correction of the linear inverse respons§0Sity:[see Eq(21)], andB;=B,/(2po). The magnitude of
function. The force given by Eq31) agrees identically with ~the correction linear i) (the new forceF) can be deter-
the force provided by the anisotropic part of the correctionmined by comparing it with either the Coriolis force or the
Mij(lz,O), namely, the product of its expression in Eigb) viscosity correction. We obtain for the ratio to the Coriolis

andu;, once we choose the coefficient in E§7b) to be force: B|V2ul/|ul~DLY"Y/»*(LA)?, assuming that the
scale of spatial velocity fluctuations is A/ that is,
2D)(2S A9TY=6—(q/)d-v-6 V2ul|/|u|~A2. Hence, the expansion parameter can be iden-
— (254 2 ( o . .
1=_p0(277)d(2v)3(—d +d+2) (d—y—6)d(d+2) tified with the cube of the Reynolds numb@s in the pre-

ceding sectiontimes (LA)?. On the other hand, the ratio
between the correction linear i and the correction linear
We have thus shown that the contributiet8b) to the re- in v’ is ~QL?v~Ek™*. This was to be expected, sinE
sponse function can be understood as arising from the anis€asures the relative strength of the viscosity and Coriolis
tropic “viscosity” tensor(27b). Since we are considering the force.
casey>d—4, we can neglect the terth® Y~8. The expan- We conclude this section by providing an important prop-
sion parameter, proportional ®/+°, must again be identi- €rty of the new force. In general, for a stress tensor associ-
fied with the cube of the Reynolds number. We postpone thigted with a pair-antisymmetric “viscosity tensor,” the power
identification to the following section. is given by[13]

If we setd=3 in the expression foB;, we obtain

(32

3y, A_ 3y, A
(20)(28;) (1L)¥° _ py DL P | 5T | 5o e, 39
' p0(277)3(2v)3 (y+3)15  157%(y+3) ¥ but, as7fjnn=—7mn;j. We conclude thaP=0; therefore,
(33  this stress tensoT{? does not lead to dissipation and is not
truly viscous. This implies that the name “viscosity tensor”
IV. EFFECTIVE LARGE-SCALE DYNAMICS is not appropriate, and we have only introduced it by analogy
with the truly viscous pair-symmetric tensfd3].

In this section we focus on the new forEe= ajT{} that
appears in the fluid equation of motion due to first order
perturbative corrections, and discuss some possible physical
implications. As already mentioned, rotating incompressible fluids sup-
port wave solutions that are exact solutions of the nonlinear
equations[1,12]. Although we have derived the quasilocal
] . ) . force from the randomly forced equatioftbat describe tur-

Here we use the results derived in previous sections tgylencg, it is of interest to see how this force affects these
‘correct” the transverse Navier-Stokes equation with theyaye solutions. Let us consider wave solutions of the form
newly generatedfirst order in{}) terms that arise at large el (x+01) a5 single mode plane waves of the linearized equa-

Ecales due to rotation. In coordinate space the f¢az tion (35) (the incompressibility condition annihilates the ad-
ecomes vective term but without the forcing term
Fi=Bi{— (X V) +4[Q- (VX)) (34 9

u
T v'V2u—P(2Qxu)— B P(2Qx V2u). (37

B. Inertial waves

A. The quasilocal force

In deriving this equation we have made use of the incom-
pressibility condition and the antisymmetry properties of th
Levi-Civita tensor. This is a quasi-locdiorce (per unit vol-
ume in which the angular velocity couples to the Laplacian (io+ 1" k)U;=2(— 1+ B1KA) Pin(K) €mgrqUn - (38)
of the fluid velocity and to the vorticitge=V X u.

®We can write this equation in components as follows

We are free to choos®=(,,0,2,) andk=(0,0k). This

choice implies thau,=0 (incompressibility conditio)y so

IQuasilocal, in general, means depending on a fundiorthis that the waves are transverse. From our choicé fibre only
case the velocity fieldi) and its derivatives. nonvanishing components k) are Py, and Py, which
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are equal to one. We can write tR@andy component$thez  corrected in the same manner as for isotropic randomly

component of Eq(38) is identically nul)] as follows stirred turbulencg¢8-10].
These perturbative results are corroborated by a symmetry
(io+ v K)ue=—2(—1+B1k*Q,uy, (393 principle. By making use of the axial symmetry of a rotating
fluid, we have constructed the most general “viscosity ten-
(io+ v k*)uy=2(—1+ B1k*Q,uy. (39b  sor” that is invariant under such symmetry. The preferred

i _ direction singled out by the angular velocif} breaks the
These equations yield theomplex frequency of the plane jsoiropy and leads to new terms in the “viscosity tensor”

waves(dispersion relation absent in the isotropic cagé3]. We have also determined
- o o and described the role of the first order perturbative new term
w(k)=*20Q cos(1— pB1k%) +iv'k?, (40 in the effective fluid equation of motion. It acts as a quasilo-

. cal force and, like the Coriolis force, is not dissipative and
where 6 is the angje betweertE and Q, jq;o thatk- € 4565 no net work on the fluid. Most importantly, we find that
=k cosd, with k=|k| andQ=[Q[. By making use of the  this quasilocal force affects the propagation of inertial waves
dispersion relatior{40) it is easy to see that the waves are n rotating fluids. For small wave amplitudes a fraction of the

circularly polarized and transverse wave energy is transported in the same direction as the phase
. velocity.
uy==*iu,, u,=0. (42) The perturbative calculation is developed as a double ex-

The wave packets are not solutions of the nonlinear equapansmn: n bc_’th the amplltud_e of the random forc_e and the
. Sangular velocity. The actual dimensionless expansion param-

eters turn out to be the cube of the Reynolds number and this
number times the inverse of the Ekman number, respectively.
For simplicity, we have restricted ourselves to the computa-
Jo(k a2 . tion of the lowest order in both: that is, first order in the
(k) 2(1-pB1k%) k; . . e .
=+ Pij(k)Q; 7481 -Q-k, random force amplitude and linear order{ This is suffi-
JKi k k cient to generate two, out of the total of eight tensor terms
(42) (seven, on account of incompressibilitallowed by axial
symmetry[see Eqs(25a8 and(25b)]. We conjecture that, at
first order in the random force amplitude, all the remaining
Q-k tensor terms are generated for higher powerQinas, ay,
ki==* 2(1—,81k2)—3 k. (43 and 35 at quadratic ordei, at cubic order, and finallys at
k quartic order. Of course, as increasing power§lare taken
y y . . into account, the coefficient functioi®6) must be expanded
Th,e st,andard textbook regult IS rec‘?"ered by taking theout to the order of() being investigated. The higher order
limit 8;—0 [1,12]. From this calculation we see that the o/ will be needed to study the effects of fast rotation and
new term in Eq.(37) not only changes the wave frequency y, yack the onset of the bidimensionalization of the flud
and phase velocity, but also the group velocity. Moreover, 5 important step in this direction will be provided by a

the group velocity is no longer perpendicular to the phasg,mplete renormalization grouiRG) analysis of the large-
velocity scales properties of a rotating incompressible fluid. In order

to carry out this RG analysis one may need to calculate the
(perturbative corrections to the nonlinear coupling teim

The quasilocal force would cause the energy transport not t8S Well as the random force amplitube and combine these

be perpendicular to the phase velocity and a small fraction opvo with the response funct|0|j calculz:;mon presented in t.hls
the energy in the waves to be transported parallel to the wavieaper. Once in hanq, the RG f|xeq points can be determl_ned
vector. and the corresponding asymptotic behavior of the rotating
fluid deduced, allowing us to compute quantities such as the
scale-dependent Reynolds and Ekman numbers, among oth-

ers. We hope to report on these developments elsewhere.

We have applied perturbation theory to a homogeneous
incompressible viscous fluid subject to solid body rotation
and isotropic random forcing. At small scales, we assume
that only the molecular shear viscosity and the Coriolis force The authors thank Juan iee-Mercader and Alvaro
are needed in writing down th&ransverseNavier-Stokes Dominguez for discussions and for reading an earlier version
equation(6). Our (first orde)y perturbative results demon- of this paper. One of ugD.H.) acknowledges correspon-
strate that(i) anisotropic components of the effective “vis- dence with Arjun Berera covering a wide range of topics in
cosity tensor” are dynamically generated at large scales byurbulence theory. Our work is supported by grant
the combined interplay of the Coriolis force, the randomBFM2002-01014 and the work of Jo&aite is further sup-
forcing term, and the inherent nonlinearity of the Navier-ported by a Ramoy Cajal contract, both of the Ministerio
Stokes equation(ii) the molecular shear viscosity gets de Ciencia y Tecnologi

The group velocityV of a wave packet igfor vanishing
viscosity)

Vi(k)

and the phase velocity (for vanishing viscosity

- (k)
vi(k)= 2

V-k=F4B.kQ-k+#0. (44)

V. DISCUSSION
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APPENDIX A: DIAGRAMMATIC REPRESENTATION OF ab h 0
THE EXACT EQUATION AND THE FIRST ORDER - . b
CORRECTION TO THE RESPONSE FUNCTION [Go(k,w)] "= atb 0/, (B1)
C d a

In this section we include a diagrammatic representation

of the exact transverse Navier-Stokes equaté®® Eq(11)]  where the matrix entries are:a=—iw+vk?, b
and of the recursion relation for the first order response func=20k,k,/k?, c=—2Q0koks/k?, d=2Qk.ks/k?, f

tion [see Eq(14)]. We have followed the convention intro- —20)(1—k2/k?), andh=—2Q(1-k2/k?). In the limit of
duced in Ref[8]. The exact equation can be represented ag/anishing rotation ¢ =0) we recover an isotropic diagonal
matrix for the linear response function and its inve8g

'S

=~y
—

[Go(K,w) ]t =(—iw+vk?) &,

ey [Go(k,w)]ij=(—iw+vk?) 15 (B2)

Given the matrix form of the inverse linear response function
(A1) (B1) we can write for the linear response funcfion

(Exact hydrodynamic equatipn _
[Go(k,w)]

where the thick lines represern(lz,w), the open circles rep-

resentf(lz,w), and the thin lines represemo(lz,w). This _ 1
graphic representation implies that the linear velocity field a’—ab%?—afh

u(o)(E,w) is given by a thin line attached to an open circle,

- - o 2 —
as we havai (K, ) = Gy(k, ) (K, w). a“+ab ah 0
In this diagrammatic representation we can also depict the X —af a’—ab 0
recursion relation for the response functiﬁnj(lz,w), Eq. —ac—bc+df —ad+bd+ch a—b2—fh
(14), given by the first order correctigrM ], [Eq. (16)], as (B3)
follows

The first order correction tG is given in Sec. Il Dsee Egs.
(14)—(17)]. We have restricted ourselves to the limit of slow
rotation (linear order in{}), and therefore need to expand

k k k
—— +4 both G, and G, * to this order. We point out thaB,* is
already linear in() [see Eq(B1)]. To linear order inQ) the
linear response function is given by
(A2) atb —-h 0
. 1
— — — 2
(Recursion relation for the first order response fungtion [Go(k’“’)]_g fa-b 0]+0(Q%
-c —-d a
where the solid circle represents the random force average
(P, ) Fu(—P,— ') introduced in Eq.(9), and the (00 P hoO
double thin lines represent the first order response function =3 0 1 0]+ = -f -b O
[G]. 001 *\l-¢c -d
APPENDIX B: PERTURBATION EXPANSION AND +0(Q2). (B4)

EVALUATION OF THE INTEGRALS . . L
The first step of this calculation is to carry out the frequency

The large distance and long time renormalizability of theintegration(over ') in Eq. (17). From Eq.(19) we see that
transverse Navier-Stokes equatitB) implies that the cor- the viscosityw is the coefficient of th&? term, and to obtain
rected response functidgh must have the same mathematical the effective viscosity we can set the frequeneyto zero
structure as its linear counterpd®y. G has, therefore, the from the outset. Once we make=0 the integral ovem’
same frequency and wave-number dependenc&@snd can be computed by means of the calculus of resid@gs
contains the same number of parameters. The renormaliz&¥e close the contour in the lower half plane, where there are
tion of the response function yields theotation indepen- in general three simple poles, which coalesce into one double
den) effective viscosityr’. In this Appendix we outline the pole in the limit of slow rotation. We obtaitkeeping up to
major points in the calculation of the first order correction tolinear terms in(}):
the response functiof8].

Equation(13) defines the linear inverse response function,
which is given by 2This is also sometimes called the linear propagetQ).
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* do' . ,
wag[ o(P,@) ][ Go(— P, — )]s Go(k—p,— ©")];
= n%ﬁﬂw Ot Osq E [Q(k_p)]jl+5rt5jlW[Q(_p)]sq
3p-k
(2+ p? ) x
+5sq51IW[Q(p)]rt+o(k2)- (B5)

We have carried out an expan5|omﬁ|k| and only keptup Whered(, is the surface element of the unit spheredin

to linear order, as Ed16) is already linear irk, and we only ~ dimensions.

need to compute th&® term. The previous equation was  We also present the following projection operator product
evaluated assuming a positive molecular shear viscosity c@xpansions that prove to be useful when handling the inter-
efficient (»>0). A change in sign will change the location of mediate steps of the computation

the poles and modify the frequency integration. We have

introduced the matriXQ(ﬁ)] defined as follows:

_ PbPd
[P Imic= — 26112 Pim(P). (B6) Pa,bc(K=P) Pyc(p) = (Ka— pa)( Od— )
which is already linear in the angular velocity. D.p 5 IZp
If we make use of this intermediate res(®#5) and sub- _ra b(kd— A 1okd), (B9
stitute it into Eq.(17), we are left with the integration over p? 2

the Wave-numbeﬁ. From Eqs(15) and(19) we can see that

the renormalization of the molecular viscosityequires that

we expand the first order correctiphl] up to second order

in the wave-numbek. The factor in square brackets in Eq.

(16) is already linear irk, so that the integrdll7) only needs where
to be expanded to first order ko It is important to note that

this integral depends dﬁlnot only through the integrand but P pe(K) =Ky Pac(K) + K Pap(K). (B9)

also through its limits of integration. This is because all wave ’

numbers appearing ifil7) must remain within the set of

wave numbers to be integrated ov@n this case we must Finally, various identities needed for the angular integrations
ensure that botlp and K—p belong to this set[8]. This  are collected he[e. LeBy represent the surface area of the
means we must integrate over iingersectionof the domains  unit d sphere anah; denote a unit vector in thigh direction.
1/Ls|5|sA and 1L<|IZ— 5|$A' where 1L is the lower The only angular integrations required are of the following

cutoff. To first order ink, the second inequality can be writ- types
ten as 1 +k cosf<p<A+kcos6, whered is the angle be-

tweenk andp (k- p=kpcosé). There are two cases to con-
sider: (i) if cos #>0 the intersection of the two intervals can
be expressed as the difference of intervdl$/L,A]
—[1/L,1L+k cosé] and (ii) if cos #<0 the intersection can S
be written ad 1/L,A]—[A +k cosé,A]. This means that the f deﬁiﬁj:_" 8
complete wave-number integration, valid up@gk?), can d

be written as

Pa,be( K= P) Pad(P) =KaPuc(P) Pad(P) + O(K?),

f de=Sd y (BlO)

dd5 A A A A S
j ] B dQgnin;NaNy d(d+2)(5'15m“+5 mOin+ GinSim)-
< |p|<A 1L<[K—p|<A (277)9
1L +kcosf A dppi~? The angular integration of the product of an odd number of
d€)q 0 A+kcoso) (27r) unit vectors over the un'd—sphere vanishes id.entically. If we
make use of the previous results, we obtain the first order
+0(k?), (B7) correction as written in Eq$18a and (18b).
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