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Large-scale features of rotating forced turbulence
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Large-scale features of a randomly isotropically forced incompressible and unbounded rotating fluid are
examined in perturbation theory. At first order in both the random force amplitude and the angular velocity, we
find two types of modifications to the fluid equation of motion. The first correction transforms the molecular
shear viscosity into a~rotation independent! effective viscosity. The second perturbative correction leads to a
new large scale nondissipative force proportional to the fluid angular velocity in the slow rotation regime. This
effective force does no net work and alters the dispersion relation of inertial waves propagating in the fluid.
Both dynamically generated corrections can be identified with certain components of the most general axisym-
metric ‘‘viscosity tensor’’ for a Newtonian fluid.
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I. INTRODUCTION

The special features of turbulence in the presence of
tation have attracted the interest of many authors@1–4#. Re-
lying on some experiments, the methods of study used h
ranged from analytic approaches to numerical simulati
@2,5–7#. The central theme in rotating fluids is the effect
the Coriolis force, which induces anisotropy~there is a pre-
ferred direction, that of the rotation axis!. This anisotropy is
extreme in the limit of fast rotation, which actually forces t
flow to become two-dimensional~Proudman-Taylor theo
rem! @1#. In this work we apply perturbation theory to th
randomly forced Navier-Stokes equation with Coriolis for
as a model for the turbulent regime of a rotating fluid. T
perturbative study of the ordinary randomly forced Navi
Stokes equation, in combination with the renormalizat
group~as an improvement of perturbation theory!, has a long
tradition @8–10#.

The addition of the Coriolis force, induced by the rotati
of the fluid, introduces one additional parameter, the ang
velocity V or, in dimensionless form, either the Rossby
Ekman numbers~in addition to the Reynolds number! @1#.
Let us focus on the Ekman number,Ek5n/(VL2), that de-
pends on the viscosityn and a scaleL, roughly associated
with the size of the fluid system. The Ekman number giv
the relative importance of the viscosity and Coriolis forc
We will assumehenceforth that for smallV (,n/L2) the
turbulence is isotropic and the only relevant parameter is
viscosity. In this limit, the results of the study of the ordina
randomly forced Navier-Stokes equation hold~the random
force is always assumed isotropic!.

For largerV we will encounter new features. In fact, th
only restriction on perturbative correction terms is that th
respect the basicsymmetryof the equations, in our case, th
axial symmetry about the rotation axis. We will see that p
turbation theory generates new terms fulfilling these symm
try constraints. Therefore, one must find the complete se
allowed terms that can arise in perturbation theory. We w
determine all the terms that can be represented by the c
ponents of an axisymmetric ‘‘viscosity tensor’’ and, in pa
1063-651X/2003/67~2!/026304~10!/$20.00 67 0263
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ticular, those that arise at first order in perturbation theo
The part of this ‘‘viscosity tensor’’ that is pair antisymmetr
in the indices plays a significant role; however, it does n
lead to dissipation, and therefore, is not truly viscous.

As in homogeneous and isotropic turbulence, we assu
that the physical region of study is sufficiently far from th
surfaces, where the boundary conditions are imposed,
them not to have anydirect effect, except the presence of th
scale L. In contrast to ordinary turbulence, this conditio
only implies that we can have homogeneous turbulence
due to rotation, it cannot be isotropic. It is pertinent to me
tion here that the possibility of anisotropic forced turbulen
and precisely with axial symmetry, has already been con
ered@11#. In this reference, however, the authors assume
the breakdown of isotropy occurs through a random fo
whose two-point correlation function depends on the anis
ropy vectornW . They derive a renormalized force proportion
to second and fourth powers ofnW . In our case, we will see
that the first perturbative correction is linear inVW , like the
Coriolis force itself.

This paper is organized as follows. In Sec. II we introdu
the randomly forced hydrodynamical equations with rotatio
We assume that the fluid is incompressible and show how
formulate them as a problem of homogeneous but an
tropic incompressible turbulence. Fourier analysis of the
bulent velocity field is used to organize the perturbation
pansion@10# in Sec. II B. We introduce in Sec. II C the linea
response function. Unlike the isotropic case, the Corio
term leads to anonsymmetriclinear response function ma
trix. In Sec. II D we define the nonlinear response functi
and present its perturbative expansion~slow rotation!. We
also compute the first order perturbative correction to
response function, which allows the identification of the~ro-
tation independent! effective shear viscosity~proportional to
the cube of the Reynolds number!, and a new anisotropic
force. In Sec. III we write down the most general axia
symmetric ‘‘viscosity tensor,’’ as the existence of a preferr
direction, singled out by the fluid rotation, requires the intr
duction and use of axisymmetric tensors. This rank fo
©2003 The American Physical Society04-1
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‘‘viscosity tensor’’ expresses the proportionality between
fluid stress tensor and the rate of strain tensor. In isotro
and homogeneous incompressible turbulence, the visco
tensor depends only on one parameter, the fluid shear vis
ity. In the case of rotating turbulence, and for slow rotatio
we find that the axisymmetric ‘‘viscosity tensor’’ depends
two parameters: the molecular shear viscosity~coming from
the isotropic terms of the ‘‘viscosity tensor’’! and a new one,
that arises from the anisotropic terms in the ‘‘viscosity te
sor.’’ We also show that this new parameter can be identi
as the coefficient of the anisotropic force calculated per
batively ~in the previous Sec. II D!. Having thus established
the equivalence between the perturbatively corrected
domly forced Navier-Stokes equation with Coriolis force
the one hand, and a~Newtonian! rotating incompressible
fluid with an effective axisymmetric ‘‘viscosity tensor’’ on
the other, we proceed, in Sec. IV, to discuss some phys
consequences of the new terms in the perturbed fluid e
tions. In Sec. IV A we consider the quasilocal force induc
by the anisotropic components of the ‘‘viscosity tensor’’ a
show that it is proportional to the cube of the Reynolds nu
ber, and that it does not lead to dissipation. In Sec. IV B
study the dynamical effects of this force on the propagat
of inertial waves. We end by discussing our results and p
posing further work on the problem of rotating turbulence.
Appendix A we introduce the diagrammatic representation
the exact Navier-Stokes equation and the diagram enco
the first order correction to the response function and in A
pendix B we present the technical details needed to carry
the perturbative calculation in the slow rotation limit.

II. BASIC EQUATIONS AND PERTURBATION THEORY

A. Equations of motion with random force
in a rotating frame

We start from the hydrodynamical equations for a flu
with density field r(x,t), velocity field u(x,t), pressure
p(x,t), and molecular shear~tangential! and bulk kinematic
viscositiesn andk, respectively. We assume that the fluid
rotating with constant angular velocityV along theẑ axis
and that it is subject to an isotropic random forcingper unit
massf. The mass and momentum conservation equations

]r

]t
1¹W •~ru!50, ~1a!

]u

]t
1~u•¹W !u52

1

r
¹W p1n¹2u1Fk1nS d22

d D G¹W ~¹W •u!

22V3u2V3~V3x!1f, ~1b!

whered is the number of space dimensions. The dimens
of spaced will be kept as a free variable, although when w
consider rotation-dependent expressions, these mus
evaluated ford53. The momentum equation~1b! is supple-
mented with a random stirring force that leads to a statist
distribution for the velocity field and can be used to mod
turbulent flows just as is done for isotropic randomly stirr
~nonrotating! turbulence@8,10#. Regarding the random forc
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spectrum and statistics, we take a Gaussian random force
is white in time, for simplicity, but we allow for~translation
invariant! spatial correlations. So we can write

^ f i~xW ,t !&50 and ^ f i~xW ,t ! f j~xW8,t8!&5Di j ~xW2xW8!d~ t2t8!,
~2!

where the angular brackets denote an average over the
dom force realizations. The spectral function forDi j (xW ) will
be specified below.

We assume that the fluid is incompressible so that
density field is constant@r(xW ,t)5r0# and ¹W •u50. Under
this condition we need only consider the equation for
conservation of momentum~1b! and write

]u

]t
1~u•¹W !u52

1

r0
¹W Fp2

r0

2
~V3x!2G

1n¹2u22V3u1f. ~3!

Notice that the force per unit massf will be taken solenoidal
as well, that is¹W •f50, in order to avoid having a random
component in the pressure.

In the absence of random stirring particular solutions
Eq. ~3! are well known~for an incompressible fluid!: it ad-
mits plane wave solutions, calledinertial waves@1,12,13#.
These are exact solutions of the nonlinear equations, bu
perposition does not hold. They may have a role in the tr
sition to turbulence@4#. In Sec. IV B we will study how the
perturbative corrections modify the propagation of inert
waves.

We now proceed to eliminate the gradient term of Eq.~3!
by making use of the incompressibility condition@10#. We
define the generalized pressure asp* [p2(r0/2)(V3x)2.
By taking the divergence of the previous equation we c
solve forp* to obtain

p* 52r0

1

¹2
@] i~uj] jui !12e i jkV j] iuk#, ~4!

so that the pressurep* can be eliminated from Eq.~3! by
writing

2
1

r0
¹W p* 5¹W

1

¹2
¹W •@~u•¹W !u12V3u#. ~5!

We can write the Navier-Stokes equation as follows:

]u

]t
1lP@~u"¹¢ !u#5n¹2u2P~2V3u!1f, ~6!

where, following standard practice, we have introduced
constantl in front of the advective term for book-keepin
purposes@8# (l will be useful when carrying out the pertur
bation expansion and is to be set to one afterwards!. The
projection operatorP is given by

P512¹W
1

¹2
¹W , ~7!
4-2
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and ensures that the nonlinear and Coriolis terms are s
noidal. In Eq.~6!, if u is solenoidal so isf and vice versa.

Unlike Eqs. ~1b! or ~3!, Eq. ~6! is translation invariant.
That is, the centrifugal term in~1b! clearly distinguishes the
origin (x50) as a special point; but as we have seen in
~5! we can include this term into the generalized pressure
eliminatep* from the equation. This yields Eq.~6! in which
a preferreddirection ~but no preferred point! is singled out
by the angular velocity. This latter equation is invariant u
der translations, hence, we can make use of the Fourier tr
form. Since in Fourier space

Pi j ~k!5d i j 2
kikj

k2
, ~8!

Eq. ~6! only contains vectors orthogonal tok and we may
refer to this equation as thetransverseNavier-Stokes equa
tion.

We choose the random force spectrum~2! as follows:

^ f i~kW ,v!&50

and

^ f i~kW ,v! f j~kW8,v8!&

5~2D !k2y~2p!d11Pi j ~k!d~v1v8!dd~kW1kW8!,

~9!

where k5ukW u, D.0 is a measure of the amplitude of th
random force and the real exponenty.22 characterizes the
random force spectrum@9#. Wheny5d the velocity correla-
tions produce an energy spectrum resembling the Kolm
orov spectrum. The random force actsisotropically on the
fluid, thus, whatever anisotropies emerge at large scale m
be due to the Coriolis force. In the following sections w
analyze the nature of the anisotropies by solving Eq.~6! in
perturbation theory.

B. The Fourier transformed equation

In what follows we use the Fourier transformed equat
of motion ~6!. Our convention for the Fourier transform
given by

uj~xW ,t !5E
k,L

ddkW

~2p!d E2`

` dv

2p
uj~kW ,v!ei (kW•xW2vt). ~10!

We have introduced a wave-number cutoffL, so that the
integral overkW is restricted to the valuesukW u,L. The inverse
of this cutoff, 1/L, can be associated with the dissipati
~Kolmogorov! scale, and we assume that 1/L!L @9#.

In order to write the Navier-Stokes Eq.~6! in wave-
number representation we transform theu field according to
Eq. ~10!, apply convolution to the nonlinear term, and inve
the Fourier transform to obtain
02630
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~2 iv1nk2!ui~kW ,v!1Pi j ~k!~2V3u! j

52
i

2
l@Pik~k!kj1Pi j ~k!kk#E

p,L

ddpW

~2p!d

3E
2`

` dv8

2p
uj~kW2pW ,v2v8!uk~pW ,v8!1 f i~kW ,v!.

~11!

This equation, but without the Coriolis term, is a famili
expression in turbulence research@8–10#. Equation~11! can
be iterated to any desired order inl and will serve as the
starting point for constructing the perturbation expansi
which is considered in the following Section.

C. The linear response function

If we ‘‘shutoff’’ the nonlinear terms~proportional tol) in
Eq. ~11! we can identify the~inverse! linear response func
tion, which will be used in carrying out the perturbative ca
culation. Thus, settingl50 in Eq. ~11! we have

~2 iv1nk2!ui
(0)~kW ,v!1Pi j ~k!~2V3u(0)! j5 f i~kW ,v!,

~12!

whereu(0) is the linear velocity field. The preceding equatio
can be written as

@G0~kW ,v!#21u(0)~kW ,v!5f~kW ,v!, ~13!

which defines the linear~inverse! response function matrix
and allows one to solve for the linear velocity fie
u(0)(kW ,v). In the following section we calculate the pertu
bative corrections to the linear inverse response function
to the existence of nonlinearities and random forcing, a
establish their effect on the physical parameters~e.g., viscos-
ity! describing the transverse Navier-Stokes equation.

D. The nonlinear response function and its first order
perturbative expansion

In this section we proceed to expand Eq.~11! by iteration,
in powers of the nonlinear coupling@see the diagrammatic
representation, Appendix A~A1!. In this way one can calcu
late the perturbative corrections to the response function
any desired order inl. We do not present all the details o
such expansion as these can be found in review articles@14#
and textbooks@10#.

The calculation of the nonlinear response function@G#
requires the correction matrix@M# which is defined by a re-
cursion formula

@G#[@G0#1@G0#@M #@G#5@G0#1@G0#@M #@G0#

1@G0#@M #@G0#@M #@G0#1•••, ~14!

which implies

@G#215@G0#212@M #. ~15!
4-3
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In Appendix A we present the diagrammatic representa
of the exact transverse Navier-Stokes equation, as well a
first order correction to the response function. The diagr
of Eq. ~14! with the correction@M #, calculated to first order
of perturbation theory in the random force amplitude, is p
sented in diagram~A2!. When written in components, th
correction matrix@M# is given by

Mmn~kW ,v!5S 2 il

2 D 2

343@krPm j~k!

1kjPmr~k!#I r jn~kW ,v!, ~16!

where the factor 4 is combinatorial@see diagram~A2!#, and
the functionI r jn(kW ,v) is defined by

I r jn~kW ,v!5E
1/L,upW u,L

ddpW

~2p!dE2`

` dv8

2p
@~ks2ps!Pln~k2p!

1~kn2pn!Pls~k2p!#

3~2D !upW u2y@G0~pW ,v8!# raPab~p!

3@G0~2pW ,2v8!#bs
T @G0~kW2pW ,v2v8!# j l ,

~17!

~whereT means the transposed matrix!. The integral overpW

would be divergent atpW 50W , so it is cutoff at the low wave-
number given by the inverse of the system size scale, 1L.
The evaluation of Eq.~17! also involves an integration ove
the frequencyv8, which has been carried out forslow rota-
tion ~see Appendix B!.

As we are interested in the late time and large scale lim
we have computedMmn(kW ,v) only for v50 and up to sec-
ond order inkW @8#. The integration over wave-numberpW can
be decomposed into an integration over modulus and ang
The integrand must be expanded, up to second order inkW , as
this is sufficient to obtain the effective viscosity@see Eq.
~B2!#. The calculation ofI r jn(kW ,v) is straightforward but
tedious and its technical details are presented in Appendi

According to Eq.~15!, the matrix@M# provides the order
l2 correction to the inverse response function. To obtain@M#
~for v50 and in the limitk→0), we carry out the integral o
Eq. ~17! and substitute into Eq.~16!:

Mi j ~kW ,0!52l2
~2D !Sd

~2p!d~2n!2

Ld2y242~1/L !d2y24

~d2y24!d~d12!

3~d22y24!k2Pi j ~k! ~18a!

1l2
~2D !Sd~2Vm!

~2p!d~2n!3

Ld2y262~1/L !d2y26

~d2y26!d~d12!

3~2d21d12!@knkjenmi2k2enm jPin~k!#,
~18b!

whereSd is the surface area of the unit sphere ind dimen-
sions, L and 1/L are, respectively, the upper and low
02630
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wave-number cutoffs,l51, ande i jk the Levi-Civita tensor
for d53. In arriving at this final form we have assumed slo
rotation, that is, we have kept the rotation dependent te
up toO(V) in the calculation. This is explained in Append
B and we will come back to this point in Sec. V. We ca
compare the linear inverse response function~B1! to its first
order correctionMi j (kW ,0). In order to do so, we setv50 in
Eq. ~B1! to obtain

@G0~kW ,0!# i j
215nk2d i j 12enm jVmPin~k!, ~19!

which is split into an isotropic part~proportional ton) and an
anisotropic part~proportional toV). The first part of@M#
~18a! corrects the molecular shear viscosityn, exactly as in
the absence of rotation@8#. The nonlinear inverse respons
function must take the same form as@G0(kW ,0)# i j

21 , with n
replaced byn8, the effective viscosity@8#. The value ofn8
can be obtained by making use of Eqs.~15! and~18a!, so that

n8k2d i j 5nk2d i j 1
~2D !Sd

~2p!d~2n!2

Ld2y242~1/L !d2y24

~d2y24!d~d12!

3~d22y24!k2Pi j ~k!. ~20!

If we multiply Eq. ~20! by Pmi(k) and make use of the fac
that P is idempotent, we obtain

n85n1
D

2n2

Ld2y242~1/L !d2y24

d2y24

~d22y24!Sd

d~d12!~2p!d
,

~21!

which shows that the isotropic term of@M #, Eq.~18a!, renor-
malizes the molecular shear viscosityn.

We must distinguish three cases, namely,y,d24, y5d
24, and y.d24. If y5d24, naive perturbation theory
fails. Given thatLL@1, in the casey,d24, the term
Ld2y24 dominates over (1/L)d2y24, so we could take the
limit L→` ~the pW integral is convergent in the lower limit!.
In contrast, in the casey.d24, the term (1/L)d2y24 domi-
nates and we instead neglect the contribution proportiona
Ld2y24. In consequence, the actual expansion paramete
DLd2y24/n3 or DLy142d/n3, according to whethery,d
24 or y.d24, respectively. We will taked24,y,d2

24. The numberDLy142d/n3 can be identified with the
cube of the Reynolds number, on account of the interpre
tion of L as the system size scale, and that the dissipation
is proportional to the amplitude of the random forceD @9#.

In particular, ind53,

n85n2
D

2n2

~1/L !2y21

y11

~y25!S3

15~2p!3

5nS 11
1

60p2

52y

y11

DLy11

n3 D . ~22!

The most interesting case isy5d53, which yields the Kol-
mogorov energy spectrum.
4-4
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The second part of the correction~18b! has the same
structure as the anisotropic term on the right-hand side of
~19!, on considering that the first term within the squa
brackets vanishes when it acts onuj . However, it does not
correspond to a renormalization ofV, owing to the addi-
tional dependence onk, namely, thek2 factor. In fact, this
factor is adequate for a ‘‘viscosity term’’ that depends onV
~anisotropy!. Therefore, it suggests the introduction of
anisotropic ‘‘viscosity,’’ which we address in the followin
section.

III. SYMMETRY REQUIREMENTS: THE EFFECTIVE
‘‘VISCOSITY TENSOR’’

In the preceding section we have seen that the term~18b!
induces no corrections ton. In this section we give a physi
cal interpretation of this anisotropic contribution, and sh
that it arises from an effective ‘‘viscosity tensor’’ for th
rotating fluid with mixed symmetry in its indices. For a New
tonian fluid the linear relation between the rate of strain a
stress tensors involves a rank four viscosity tensor, so tha
can write@15#

Ti j 5
1

2
h i jmnS ]um

]xn
1

]un

]xm
D[h i jmnumn . ~23!

As bothTi j andumn are symmetric tensors the only symm
tries of the ‘‘viscosity tensor’’ are the following:h i jmn
5h j imn and h i jmn5h i jnm . From the above symmetries w
conclude that the ‘‘viscosity tensor’’ has 36 independe
components~in d53). We writeh i jmn as a sum of a pair-
symmetric~S! and a pair-antisymmetric~A! part as follows

h i jmn5
1

2
~h i jmn1hmni j!1

1

2
~h i jmn2hmni j!

[h i jmn
S 1h i jmn

A , ~24!

so thath i jmn
S has the same symmetries ash i jmn plus h i jmn

S

5hmni j
S , andh i jmn

A has the same symmetries ash i jmn plus
h i jmn

A 52hmni j
A . There are 21 pair-symmetric and 15 pa

antisymmetric independent components. The presence
axial symmetry~induced by the Coriolis term! reduces the
number of independent components of bothh i jmn

S andh i jmn
A .

The most general axisymmetric tensor~in d53) can be con-
structed fromV i , d i j , ande i jk as follows

h i jmn
S 5a1~V2!~d imd jn1d ind jm!1a2~V2!d i j dmn1a3~V2!

3~V iV jdmn1VmVnd i j !1a4~V2!~V iVmd jn

1V jVmd in1V iVnd jm1V jVnd im!

1a5~V2!V iV jVmVn , ~25a!

h i jmn
A 5b1~V2!Vq~eqimd jn1eqind jm1eq jmd in1eq jnd im!

1b2~V2!Vq~eqimV jVn1eqinV jVm1eq jmV iVn

1eq jnV iVm!1b3~V2!~V iV jdmn2VmVnd i j !.

~25b!
02630
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We observe that the number of independent components
been reduced from 21 to 5 for the pair-symmetric term a
from 15 to 3 for the pair-antisymmetric part. The symme
arguments used in deducing Eqs.~25a! and ~25b! are analo-
gous to those used in the theory of elasticity@16#.

The coefficient functionsa i(V
2) andb i(V

2) can be writ-
ten as a series inV2:

an5(
r 50

1`

anr~V2!r , bn5(
r 50

1`

bnr~V2!r . ~26!

In the limit of slow rotation~linear order inV) these coef-
ficients reduce to their constant (V50) value and, further-
more, the terms proportional toa3 ,a4 ,a5 ,b2, andb3 van-
ish at this order. We can then write for the ‘‘viscosity tenso

h i jmn
S 5a1~d imd jn1d ind jm!1a2d i j dmn , ~27a!

h i jmn
A 5b1Vq~eqimd jn1eqind jm1eq jmd in1eq jnd im!.

~27b!

The pair-symmetric part is isotropic and we can ident
r0k5a212a1 /d and r0n5a1, wherek and n denote the
molecular bulk and shear kinematic viscosities, respectiv
the pair-antisymmetric part, proportional to the coefficie
b1, is identified below. Incompressibility means thatk50,
leaving onlyn, in the absence of rotation. This is the m
lecular viscosity in the original Navier-Stokes equation~1b!,
which gets renormalized, becoming an effective~rotation in-
dependent! viscosity, as seen in the preceding Sec. II
However, it is to be expected that perturbation theory,
sufficiently high order, generates a dependence ofa1 on V,
such that one would be led to consider a rotation depend
viscosity. At the order we are working, the effect of rotatio
is to generate a rotation dependent anisotropic ‘‘viscosity’’
the type~27b!, as will be demonstrated below.

The anisotropic ‘‘viscosity’’~27b! is associated to a stres
tensorTi j

A , which yields the following viscous force

Fi[] jTi j
A5] j~h i jmn

A umn!. ~28!

In wave-number representation this can be written as

Fi52S 1

2D kjh i jmn
A ~kndmq1kmdnq!uq52kjkmh i jqm

A uq ,

~29!

where we have made use of the symmetry within pairs
indices of the tensorhA. In order to be consistent with th
transverse Navier-Stokes equation, we must project Eq.~29!
by means ofP(k)

Pip~k!Fp52kjkmPip~k!hp jqm
A uq . ~30!

We now substitute Eq.~27b! into the previous expression t
obtain
4-5
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Pip~k!Fp52b1Pip~k!kjkmVn

3~epqnd jm1epmnd jq1e jqndpm1e jmndpq!uq

52b1Vn@kqkme imn1k2emqnPim~k!#uq

52b1Vnk2emqnPim~k!uq , ~31!

where we have taken into account the antisymmetric pro
ties of the Levi-Civita tensor and the fact thatPi j (k)ki
5Pi j (k)kj50. We now compare this equation with the fir
order perturbative correction of the linear inverse respo
function. The force given by Eq.~31! agrees identically with
the force provided by the anisotropic part of the correct
Mi j (kW ,0), namely, the product of its expression in Eq.~18b!
anduj , once we choose the coefficient in Eq.~27b! to be

b1[2r0

~2D !~2Sd!

~2p!d~2n!3
~2d21d12!

Ld2y262~1/L !d2y26

~d2y26!d~d12!
.

~32!

We have thus shown that the contribution~18b! to the re-
sponse function can be understood as arising from the an
tropic ‘‘viscosity’’ tensor~27b!. Since we are considering th
casey.d24, we can neglect the termLd2y26. The expan-
sion parameter, proportional toD/n3, must again be identi-
fied with the cube of the Reynolds number. We postpone
identification to the following section.

If we setd53 in the expression forb1, we obtain

b15r0

~2D !~2S3!

~2p!3~2n!3
4

~1/L !2y23

~y13!15
5

r0

15p2~y13!

DLy13

n3
.

~33!

IV. EFFECTIVE LARGE-SCALE DYNAMICS

In this section we focus on the new forceFi5] jTi j
A that

appears in the fluid equation of motion due to first ord
perturbative corrections, and discuss some possible phy
implications.

A. The quasilocal force

Here we use the results derived in previous sections
‘‘correct’’ the transverse Navier-Stokes equation with t
newly generated~first order inV) terms that arise at larg
scales due to rotation. In coordinate space the force~28!
becomes

Fi5b1$2~VW 3¹2uW ! i1] i@VW •~¹W 3uW !#%. ~34!

In deriving this equation we have made use of the inco
pressibility condition and the antisymmetry properties of
Levi-Civita tensor. This is a quasi-local1 force ~per unit vol-
ume! in which the angular velocity couples to the Laplaci
of the fluid velocity and to the vorticityv5¹W 3u.

1Quasilocal, in general, means depending on a function~in this
case the velocity fieldu) and its derivatives.
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The physical character of the forceFi can be revealed by
writing the effectiveequation of motion in coordinate spac
We have

]u

]t
1lP~u•¹W u!5n8¹2u2P~2V3u!

2b18P~2V3¹2u!1f, ~35!

wheren8 is the rotation independent effective kinematic v
cosity, @see Eq.~21!#, andb185b1 /(2r0). The magnitude of

the correction linear inV ~the new forceFW ) can be deter-
mined by comparing it with either the Coriolis force or th
viscosity correction. We obtain for the ratio to the Corio
force: b18u¹

2uu/uuu;DLy11/n3(LL)2, assuming that the
scale of spatial velocity fluctuations is 1/L, that is,
u¹2uu/uuu;L2. Hence, the expansion parameter can be id
tified with the cube of the Reynolds number~as in the pre-
ceding section! times (LL)2. On the other hand, the rati
between the correction linear inV and the correction linea
in n8 is ;VL2/n;Ek21. This was to be expected, sinceEk
measures the relative strength of the viscosity and Cori
force.

We conclude this section by providing an important pro
erty of the new force. In general, for a stress tensor ass
ated with a pair-antisymmetric ‘‘viscosity tensor,’’ the pow
is given by@13#

P}E d3xWui j Ti j
A5E d3xWui j h i jmn

A umn , ~36!

but, ash i jmn
A 52hmni j

A , we conclude thatP50; therefore,
this stress tensorTi j

A does not lead to dissipation and is n
truly viscous. This implies that the name ‘‘viscosity tenso
is not appropriate, and we have only introduced it by analo
with the truly viscous pair-symmetric tensor@13#.

B. Inertial waves

As already mentioned, rotating incompressible fluids s
port wave solutions that are exact solutions of the nonlin
equations@1,12#. Although we have derived the quasiloc
force from the randomly forced equations~that describe tur-
bulence!, it is of interest to see how this force affects the
wave solutions. Let us consider wave solutions of the fo
ei (kW•xW1vt) as single mode plane waves of the linearized eq
tion ~35! ~the incompressibility condition annihilates the a
vective term! but without the forcing term

]u

]t
5n8¹2u2P~2V3u!2b18P~2V3¹2u!. ~37!

We can write this equation in components as follows

~ iv1n8k2!ui52~211b18k
2!Pim~k!emqnVqun . ~38!

We are free to chooseV5(Vx ,0,Vz) andk5(0,0,k). This
choice implies thatuz50 ~incompressibility condition!, so
that the waves are transverse. From our choice fork the only
nonvanishing components ofP(k) arePxx andPyy , which
4-6
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are equal to one. We can write thex andy components@thez
component of Eq.~38! is identically null!# as follows

~ iv1n8k2!ux522~211b18k
2!Vzuy , ~39a!

~ iv1n8k2!uy52~211b18k
2!Vzux . ~39b!

These equations yield the~complex! frequency of the plane
waves~dispersion relation!

v~kW !562V cosu~12b18k
2!1 in8k2, ~40!

where u is the angle betweenk and V, so that k•V

5kV cosu, with k5ukW u andV5uVW u. By making use of the
dispersion relation~40! it is easy to see that the waves a
circularly polarized and transverse

uy56 iux , uz50. ~41!

The wave packets are not solutions of the nonlinear eq
tions and can only be considered for small wave amplitud
The group velocityV of a wave packet is~for vanishing
viscosity!

Vi~kW ![
]v~kW !

]ki
56

2~12b18k
2!

k
Pi j ~k!V j74b18

ki

k
V•k,

~42!

and the phase velocityv ~for vanishing viscosity!

v i~kW ![
v~kW !

k2
ki562~12b18k

2!
V•k

k3
ki . ~43!

The ‘‘standard textbook’’ result is recovered by taking t
limit b18→0 @1,12#. From this calculation we see that th
new term in Eq.~37! not only changes the wave frequen
and phase velocity, but also the group velocity. Moreov
the group velocity is no longer perpendicular to the ph
velocity

V•k574b18kV•kÞ0. ~44!

The quasilocal force would cause the energy transport no
be perpendicular to the phase velocity and a small fractio
the energy in the waves to be transported parallel to the w
vector.

V. DISCUSSION

We have applied perturbation theory to a homogene
incompressible viscous fluid subject to solid body rotat
and isotropic random forcing. At small scales, we assu
that only the molecular shear viscosity and the Coriolis fo
are needed in writing down thetransverseNavier-Stokes
equation~6!. Our ~first order! perturbative results demon
strate that~i! anisotropic components of the effective ‘‘vis
cosity tensor’’ are dynamically generated at large scales
the combined interplay of the Coriolis force, the rando
forcing term, and the inherent nonlinearity of the Navie
Stokes equation,~ii ! the molecular shear viscosityn gets
02630
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corrected in the same manner as for isotropic rando
stirred turbulence@8–10#.

These perturbative results are corroborated by a symm
principle. By making use of the axial symmetry of a rotatin
fluid, we have constructed the most general ‘‘viscosity te
sor’’ that is invariant under such symmetry. The preferr
direction singled out by the angular velocityV breaks the
isotropy and leads to new terms in the ‘‘viscosity tenso
absent in the isotropic case@13#. We have also determine
and described the role of the first order perturbative new te
in the effective fluid equation of motion. It acts as a quasi
cal force and, like the Coriolis force, is not dissipative a
does no net work on the fluid. Most importantly, we find th
this quasilocal force affects the propagation of inertial wav
in rotating fluids. For small wave amplitudes a fraction of t
wave energy is transported in the same direction as the p
velocity.

The perturbative calculation is developed as a double
pansion: in both the amplitude of the random force and
angular velocity. The actual dimensionless expansion par
eters turn out to be the cube of the Reynolds number and
number times the inverse of the Ekman number, respectiv
For simplicity, we have restricted ourselves to the compu
tion of the lowest order in both: that is, first order in th
random force amplitude and linear order inV. This is suffi-
cient to generate two, out of the total of eight tensor ter
~seven, on account of incompressibility! allowed by axial
symmetry@see Eqs.~25a! and ~25b!#. We conjecture that, a
first order in the random force amplitude, all the remaini
tensor terms are generated for higher powers inV: a3 , a4,
andb3 at quadratic order,b2 at cubic order, and finallya5 at
quartic order. Of course, as increasing powers ofV are taken
into account, the coefficient functions~26! must be expanded
out to the order ofV being investigated. The higher orde
terms will be needed to study the effects of fast rotation a
to track the onset of the bidimensionalization of the fluid@4#.

An important step in this direction will be provided by
complete renormalization group~RG! analysis of the large-
scales properties of a rotating incompressible fluid. In or
to carry out this RG analysis one may need to calculate
~perturbative! corrections to the nonlinear coupling terml,
as well as the random force amplitudeD, and combine these
two with the response function calculation presented in t
paper. Once in hand, the RG fixed points can be determ
and the corresponding asymptotic behavior of the rotat
fluid deduced, allowing us to compute quantities such as
scale-dependent Reynolds and Ekman numbers, among
ers. We hope to report on these developments elsewher
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APPENDIX A: DIAGRAMMATIC REPRESENTATION OF
THE EXACT EQUATION AND THE FIRST ORDER

CORRECTION TO THE RESPONSE FUNCTION

In this section we include a diagrammatic representa
of the exact transverse Navier-Stokes equation@see Eq.~11!#
and of the recursion relation for the first order response fu
tion @see Eq.~14!#. We have followed the convention intro
duced in Ref.@8#. The exact equation can be represented

~A1!

~Exact hydrodynamic equation!

where the thick lines representu(kW ,v), the open circles rep
resent f (kW ,v), and the thin lines representG0(kW ,v). This
graphic representation implies that the linear velocity fi
u(0)(kW ,v) is given by a thin line attached to an open circ
as we haveu(0)(kW ,v)5G0(kW ,v)f(kW ,v).

In this diagrammatic representation we can also depict
recursion relation for the response functionGi j (kW ,v), Eq.
~14!, given by the first order correction@M #, @Eq. ~16!#, as
follows

~A2!

~Recursion relation for the first order response functio!

where the solid circle represents the random force ave

^ f m(pW ,v8) f n(2pW ,2v8)& introduced in Eq.~9!, and the
double thin lines represent the first order response func
@G#.

APPENDIX B: PERTURBATION EXPANSION AND
EVALUATION OF THE INTEGRALS

The large distance and long time renormalizability of t
transverse Navier-Stokes equation~6! implies that the cor-
rected response functionG must have the same mathematic
structure as its linear counterpartG0 . G has, therefore, the
same frequency and wave-number dependence asG0 and
contains the same number of parameters. The renorma
tion of the response function yields the~rotation indepen-
dent! effective viscosityn8. In this Appendix we outline the
major points in the calculation of the first order correction
the response function@8#.

Equation~13! defines the linear inverse response functio
which is given by
02630
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@G0~kW ,v!#215S a2b h 0

f a1b 0

c d a
D , ~B1!

where the matrix entries are:a52 iv1nk2, b
52Vk1k2 /k2, c522Vk2k3 /k2, d52Vk1k3 /k2, f
52V(12k2

2/k2), and h522V(12k1
2/k2). In the limit of

vanishing rotation (V50) we recover an isotropic diagona
matrix for the linear response function and its inverse@8#

@G0~kW ,v!# i j
215~2 iv1nk2!d i j ,

@G0~kW ,v!# i j 5~2 iv1nk2!21d i j . ~B2!

Given the matrix form of the inverse linear response funct
~B1! we can write for the linear response function2

@G0~kW ,v!#

5
1

a32ab22a f h

3S a21ab 2ah 0

2a f a22ab 0

2ac2bc1d f 2ad1bd1ch a22b22 f h
D .

~B3!

The first order correction toG is given in Sec. II D@see Eqs.
~14!–~17!#. We have restricted ourselves to the limit of slo
rotation ~linear order inV), and therefore need to expan
both G0 and G0

21 to this order. We point out thatG0
21 is

already linear inV @see Eq.~B1!#. To linear order inV the
linear response function is given by

@G0~kW ,v!#5
1

a2 S a1b 2h 0

2 f a2b 0

2c 2d a
D 1O~V2!

5
1

a S 1 0 0

0 1 0

0 0 1
D 1

1

a2 S b 2h 0

2 f 2b 0

2c 2d 0
D

1O~V2!. ~B4!

The first step of this calculation is to carry out the frequen
integration~over v8) in Eq. ~17!. From Eq.~19! we see that
the viscosityn is the coefficient of thek2 term, and to obtain
the effective viscosity we can set the frequencyv to zero
from the outset. Once we makev50 the integral overv8
can be computed by means of the calculus of residues@8#.
We close the contour in the lower half plane, where there
in general three simple poles, which coalesce into one dou
pole in the limit of slow rotation. We obtain~keeping up to
linear terms inV):

2This is also sometimes called the linear propagator@8,10#.
4-8
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E
2`

` dv8

2p
@G0~pW ,v8!# rt@G0~2pW ,2v8!#sq@G0~kW2pW ,2v8!# j l

5d rtdsqd j l

S 11
pW •kW

p2 D
~2np2!2

1d rtdsq

S 11
2pW •kW

p2 D
~2np2!3

@V~kW2pW !# j l 1d rtd j l

S 11
pW •kW

p2 D
~2np2!3

@V~2pW !#sq

1dsqd j l

S 21
3pW •kW

p2 D
~2np2!3

@V~pW !# rt1O~k2!. ~B5!
s
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We have carried out an expansion ink5ukW u and only kept up
to linear order, as Eq.~16! is already linear ink, and we only
need to compute thek2 term. The previous equation wa
evaluated assuming a positive molecular shear viscosity
efficient (n.0). A change in sign will change the location o
the poles and modify the frequency integration. We ha
introduced the matrix@V(pW )# defined as follows:

@V~pW !#mk522e i jkV jPim~p!, ~B6!

which is already linear in the angular velocity.
If we make use of this intermediate result~B5! and sub-

stitute it into Eq.~17!, we are left with the integration ove
the wave-numberpW . From Eqs.~15! and~19! we can see tha
the renormalization of the molecular viscosityn requires that
we expand the first order correction@M# up to second orde
in the wave-numberkW . The factor in square brackets in E
~16! is already linear ink, so that the integral~17! only needs
to be expanded to first order ink. It is important to note that
this integral depends onkW not only through the integrand bu
also through its limits of integration. This is because all wa
numbers appearing in~17! must remain within the set o
wave numbers to be integrated over~in this case we mus
ensure that bothpW and kW2pW belong to this set! @8#. This
means we must integrate over theintersectionof the domains
1/L<upW u<L and 1/L<ukW2pW u<L, where 1/L is the lower
cutoff. To first order inkW , the second inequality can be wri
ten as 1/L1k cosu,p,L1kcosu, whereu is the angle be-
tweenkW andpW (kW•pW 5kp cosu). There are two cases to con
sider:~i! if cosu.0 the intersection of the two intervals ca
be expressed as the difference of intervals@1/L,L#
2@1/L,1/L1k cosu# and ~ii ! if cosu,0 the intersection can
be written as@1/L,L#2@L1k cosu,L#. This means that the
complete wave-number integration, valid up toO(k2), can
be written as

E
1/L,upW u,L,1/L,ukW2pW u,L

ddpW

~2p!d

5E dVdS E
1/L

L

2E
1/L

1/L1k cosu

2E
L1k cosu

L D dppd21

~2p!d

1O~k2!, ~B7!
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where dVd is the surface element of the unit sphere ind
dimensions.

We also present the following projection operator prod
expansions that prove to be useful when handling the in
mediate steps of the computation

Pa,bc~k2p!Pdc~p!5~ka2pa!S dbd2
pbpd

p2 D
2

papb

p2 S kd2
pW •kWpd

p2 D 1O~k2!, ~B8!

Pa,bc~k2p!Pad~p!5kaPbc~p!Pad~p!1O~k2!,

where

Pa,bc~k!5kbPac~k!1kcPab~k!. ~B9!

Finally, various identities needed for the angular integratio
are collected here. LetSd represent the surface area of th
unit d sphere andn̂ j denote a unit vector in thej th direction.
The only angular integrations required are of the followi
types

E dVd5Sd , ~B10!

E dVdn̂i n̂ j5
Sd

d
d i j ,

E dVdn̂i n̂ j n̂nn̂m5
Sd

d~d12!
~d i j dmn1d imd jn1d ind jm!.

The angular integration of the product of an odd number
unit vectors over the unitd-sphere vanishes identically. If w
make use of the previous results, we obtain the first or
correction as written in Eqs.~18a! and ~18b!.
4-9
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